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When modeling long-run behavior, fractional ARIMA models can give insights unobtainable
with the nonfractional ARIMA models. As an application, the deterministic trend and unit root
with drift models are nested in the fractional ARIMA model. This allows testing between the
two models based on estimated parameter values. This tesi is applied to postwar US quarterly

_rteal GNP, The test concludes that GNP is consistent with both models. The estimated fractional
parameter is significantly smaller than reported in Diebold and Rudebusch (1989). The differ-
ence is explained by bias in the previous esiimates. Relationships with the cumuplative impulse
response and spectral density at frequency zero are noted.

1. Introduction

The parametric approach to investigating the long-run behavior of time
series consists of estimating a parametric model for the series and relying on
the long-run implications of the estimated. model. The primary advantage is
the precision gained by focusing the information in the series through the
parameter estimates. A drawback is that the parameter estimates are sensi-
tive to the class of models considered and may be misleading because of
misspecification. The possibility of misspecification with parametric models
can never he settled conclusively, However, the probiem can be addressed by
considering larger classes of models. This is the approach of the current
paper. The fractional ARIMA model is used tc model the long-run behavior
of a time series. The fractional differencing parameter allows the capturing of
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long-run behavior without problems commonly associated with ARMA mod-
els. As an example of its usefulness, the fractional ARIMA model is used to
nest a deterministic trend mode] and a unit root with drift maodel, which
allows testing between the two models based on the estimated fractional
difference parameter. This test is then applied to postwar quarterly real
GNP. It appears the data are consistent with both models.

The next section discusses inherent problems associated with modeling
long-run behavior with ARMA models and how the fractional ARIMA
model can avoid these problems. Section 3 explains how the fractional
ARIMA model can nest the deterministic trend and the unit root with drift
models. This allows testing between these models based on the estimated
fractional differencing parameter. Section 4 considers the behavior of a
fractionally integrated series at frequency zero. This highlights the difference
between the fractional differencing parameter and estimates of the spectral
density at frequency zero. In section 5 the proposed test is applied to postwar
quarterly US real GNP. Econometric issues and the interpretation of the
estimates are also discussed in section 3,

How the current results tompare to previous results in the literature are
discussed is section 6. Fractional ARIMA models for output were considered
in Diebold and Rudebusch (1989) [D&R). Unfortunately, the approach was
limited by not considering the possibility that the output series followed a
deterministic trend model.! In section 6, it is shown that the estimation
procedure used in D& R produces significantly biased estimates for a reason-
able parametric model of real GNP. This has two important implications,
First, researchers modeling the long-run behavior of time serics should
realize that the procedure used In D&R can produce significant bias.
Second, economists interested in the time series model for output should
realize that the parameter estimates reported in D& R should be viewed with
caution,

2. ARMA versus fractional ARIMA for modeling the long run

The most commonly used class of paramefric time series models is the
ARMA(p, g) model

(14 ¢, L+, L2+ .. +,L7)x,
=10 L+0,L7+ - 4 19)e,
gl

where it is assumed that the roofs of I+ z+¢,z24 .- +¢,27} and
(I +8,z+6,27+ - +8,29) are outside the unit circle, Unfortunately, this

"The unit rool was the only model considered. The hypathesis tests conducted were one-sided
tests of & unit root null hypothesis,
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class of models is not well suited to model the long-run behavior of time
series. One problem is that the parameter values that capture the long rua
are near the boundary of the parameter space, where the asymptotic distri-
butions are pocr approximations to sampling distributions which makes
inference difficult. To model positive long-run dependence, a root of the
autoregressive polynomial must approach the unit circle. Similarly, to model
negative long-run dependence, a root of the moving average polynomial must
approach the unit circle.

A second problem in using ARMA models to capture the long-run behav-
ior of a series is that if an AR or MA parameter does capture the long-run
behavior of a series it imposes significant restrictions on the short-run
behavior of the series. For example, it is not possible with a single AR
parameter to model strong positive correlation at cycles of length greater
than 15 years without modeling strong positive correlation at (say} cyvcles of
length 10 vears.? The same problem occurs in modeling negative long-run
dependence in a series.

A third problem in relying on ARMA models to capture the long run
concerns model selection in small samples. As pointed out in Cochrane
{1988) maximum likelihood (asymptotically) chooses parameter values to
minimize the difference between the periodogram of the data and the
spectral density of the parameiric model weighted at different frequencies.
The result is that the fit of the long-run behavior of the series may be
sacrificed te obtain a better fit of the short-run behavior. There is no way to
direct the fit of an AR or an MA parameter to the long-run characteristics of
a series, even though a researcher may be investigating long-run behavior.

One approach that avoids these problems is to rely on nonparametric
estimations techniques. Unfortunately, given the sample sizes of most eco-
nomic time series the nonparametric estimates are too imprecise to give
meaningful restrictions. An alternative approach, considered in this paper, is
to estimate a more general class of parametric models which is less suscepti-
ble to these problems. _

It is possible to choose a parameterization where one parameter’s primary
effect concerns the long run and whose effect on the short run is limited.
Such a class of models is the fractional ARIMA model. The general model
will be written

1+ L+d, L7+ - +¢,L7)(1—L)"x,
P

=(1+8,L+ 0,17+ -+ +8,L%)e,.

“This problem can be reduced by considering a highly parameterized model. An MA root near
the unit circle can offset some of the power at higher frequencies. However, this leads to a
different problem of near root cancellation, and such a model is rarely judged optimal by a
model selection criteria.
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Fig. 1. Spectral dénsity of the fractional ARIMA(Q, 4,0) model (1 —L)“x_, = g, for various value
of 4. The innovation variance is set to one.

It will be assumed that d <05 and that the roots of (1+d,z+
G2+ +d,zP) and (1 +6,2 + 0,27+ - +6,2%) are outside the unit
circle. In this model, the short-run behavior of the series can be captured by
the ARMA parameters and the long-run behavior can be modeled by the
fractional differencing parameter, which can reduce the probiems discussed
in the previous section. The ability of the fractional differencing parameter to
model the long-run behavior of a time series was discussed in Diebold and
Rudebusch (1989).

The fractional ARIMA(p, d, g) model is less susceptible to the problems
encountered by the nonfractional ARMA( p, g) models. The model is nonsta-
tionary for d = (.5, However, long-range dependence is associated with all
nonzero 4 > 0, which allows capturing the long-run behavior without being
‘close to the boundary’ of the parameter space. This long-run dependence is
achieved with less restrictions on the higher frequency behavior of the time
series. This can be seen by the relatively flat spectral density over higher
frequencies; see fig. 1. Finally, when investigating the long-run behavior of &
time series the problems associated with model selection with nenfractional
ARIMA models can be avoided by only considering models that include the
fractional differencing parameter. When Investigating the long-run behavior
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of a time series, a model should be considered that allows the long-run
behavior to be captured.

Fractional ARIMA models have advantages over nonfractional ARIMA
models particularly when the long-run behavior of the series is being studied.
But how can they be used to answer important economic questions? One
method presented in Diebold and Rudebusch (1989} used the estimated
fractional differencing parameters to estimate the impulse response func-
tions. Though constrained by imprecise estimation techniques, the approach
of Diebold and Rudebuscht is an example of how fractional ARIMA models
can give new insights into economic problems. A different procedure, pre-
sented below, uses the fractional ARIMA models to test between different
models of long-run behavior,

. 3. The fractional ARTIMA. model and modeis of trend

An important question in the past decade has been the trend behavior of
economic and financial data. Attention has been primarily focused on testing
between the deterministic time trend model and the unit root with drift
model. Because this question is concerned with the long-run behavior .of a
time series, the fractional ARIMA model should be useful.

The general deterministic trend model is

x,=utte,

where e, is stationary. This implies that there exists a Wold representation

e, =b{(L)e, = x big.
=0

where &, ~ (0, ;%) is uncorrelated and Z‘?:Dbf < =, The additional assump-
tion is made that bh(1) = Elgbj#—-{). The series in levels is nonstationary;
however, a stationary model is achieved by first differencing the series. The

resulting model is -

Ax,=pu+(1—L) 2 be, ;. (1)
j=0

The general unit root with drift model is

X,=p+x,_, tu,
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where u, is stationary. This implies ‘that there exists a Wold representation
=1
uy=a(L)e,= ¥ ae,_,,
i=0

where ¢, ~ (0,0.%) is uncorrelated and Z;Ua} <, The additional assump-
tion is made that a(l) = E‘}“ﬁoaﬂ& 0. The series in levels is nonstationary;
however, a stationary model can be achieved by first differencing the series.

The resulting model is

Ax,=p +u, =pny+ Zajs,_j. (2)
j=

The only distinguishing characteristic between the first difference of the
deterministic time trend model [eq. (1)) and the first difference of the unit
root with drift model [eq. (2)] is the term (1 — L) in the first difference of the
deterministic trend series. This is the well-known result that first differencing
a deterministic trend imposes a unit oot in the moving average representa-
tion. In terms of the fractional integration parameter, the first difference of
the deterministic trend series is integrated of order —1.0 and the first
difference of the unit root model is integrated of order 0.0. This suggests
testing between the models by estimating the best fractional ARIMA model
for the first differenced series. If the fractional difference parameter estimate
is around —1.0, the data support the deterministic trend model; if the
parameter estimate is around 0.0, the data support the unit root with drift
model.

When attention is limited to the deterministic trend model and the unit
root medel and it is assumed that the error’s Wold representation does not
sum to zero, then a necessary and sufficient condition for the first difference
of the series to be integrated of order 0.0 is that its spectral density at
frequency zero is not zero. Similarly, when atlention is restricted to the unit
root model with drift and the deterministic trend models, a necessary and
sufficient condition for the first difference of the series to be integrated of
order —1.0 is that its spectral density is zero at frequency zero. This means
that the test of the order of integration of a series is testing the same
implication as tests of the spectral density at frequency zero. Though the
tmplication being tested is the same, the tests are different. Tests which use
the estimated value of the spectral density at frequency zero focus the
information in the data into the estimated level of the spectral density at
frequency zero. But, tests which use the fractional differencing parameter
focus the sample information on the behavior of the series at higher frequen-
cies. The next section highlights the difference between tesis based on the
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spectral density at frequency zero and the fractional differencing parameter
by considering the behavior of the spectral density of a fractionally integrated
series.

4. Fractional integrated model at frequency zero

Using the fractional difference parameter to characterize the long-run
behavior of a time series is different from statistics that estimate the spectral
density at frequency zero. The fractional differencing parameter is not
identified by the level of its spectral density at frequency zero. For every
fractional ARIMA(p, d, g} model with AR and MA roots ocutside the unit
circle the level of the spectral density at frequency zero satisfies

0, d <0,

Similarly, the fractional differencing parameter is not identified by the
derivative of the spectral density at frequency zero,

0, d< —1%,
F0) =1 —oo, -3<d <0,
0, 0<d.

The same behavior at frequency zero is associated with many different values
of the fractional differencing parameter, hence the fractional differencing
parameter is not identified by its behavior at frequency zero.

The distinctior between the spectral density at frequency zero and the
fractional differencing parameter can be understood by considering
the moving average representation of a fractionally integrated series. For the
fractionally integrated model (1 — L) x, = ¢, the Wold representation is

S-S (CLY
X{_C(L)S.r— jé:oc_,- = j§0 F(d)r(_}-i-l) r=j» (3)

and as j increases the coefficients decay at a hyperbolic rate, which is
indexed by d, i.e., as j — =, '

1
c

T Fa (4)

{This can be contrasted with a geometric decay for an ARMA( # p <o, g <
) model with roots outside the unit circle.] The cumulative impulse response -
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1s defined to be the total impact that a unit innovation in the error process
has on the level of the series

C(1) = icj-,

i=0

which is related to the spectral density at frequency zero by f,(0) = C(1)%c2.
While the cumulative impulse response function captures the ultimate out-
come of a unit innovation, the fractional differencing parameter captures the
behavior of the series as it approaches this ultimate outcome. In terms of an
economic system the cumulative impulse response is the total impact that a
unit innovation has on the system, while the fractional differencing parameter
characterizes the rate at which the impact of the unit innovation dies out.
The fractional differencing parameter is not identified by the ultimate impact
of an innovation, but is identified by the decay of the system’s response to the
innovation. The same argument can be made in the frequency domain. The
spectral density at frequency zero is the variance associated with infinitely
long cycles and the fractional differencing parameter indexes the behavior of
the series as the infinitely long cycle is approached: see fig. 1.

One criticism of the cumulative impulse response function and the vari-
ance ratio statistic is that these statistics attempt to estimate the impact of an
innovation in the infinite future. The point is that given a finite sample, the
future behavior of the series is uncertain and this uncertainty increases with
cycle length. The greatest uncertainty is associated with the behavior of the
time series at the infinitely long cycle, which is what the cumulative impulse
response function and the variance ratio statistic attempt to estimate. Esti-
mates of the fractional differencing parameter avoid this eriticism. The
fractional differencing parameter is not identified by the behavior of the
series at the infinitely long cycle. It is identified by the behavior at shorter

- cycles. A fractional differencing parameter imposes restrictions over all

frequencies, with most of its restrictions concentrated at the low frequencies
again see fig. 1.

5. The trend behavior of postwar quarterly real GNP

Much has been published concerning ‘What is the correct model of the
trend behavior of real GNP?', The two primary competitors are the deter-
ministic time trend model and the unit root with drift model. These two
models of the trend are thought to apply to the natural log of real GNP. To
distinguish between these two models the test proposed in section 3 will be
applied to quarterly real US GNP from 1947:1 to 1980:IV.
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Table |
2n( L), AIC, SIC: first difference of the log of quarterly real GNP (s.a.); Citibase
1947:1-1989:IV; 16 fractional ARMA models and 16 ARMA models.

Number of Mumber of MA parameters {g)
AR parameters { p) 0 1 2 3
Fractional ARMA

0 1083.436 1085.865 1096.057 - 1100.848
1081.436 1081.865 109%0.057 1092.848
1078.294 1075.582 1080.632 1080.281

1 1095.024 1095.198 1100911 1102.092
1091.024 1089.198 1052.911 1092.092
1084.741 1079.773 1080.345 1076.384

2 1095.468 1097.328 1101.748 1103053
1089.468 1089.328 1091.748 1091.053

. 1080.043 1076.76}% 1076.039 1672.203

3 1100.405 1100.467 . 1105.695 1105.721 ..
1092.405 1090.467 1093.695 1091.721
1079.839 1074.759 1074.845 1069.730

ARMA .

0 1063.658 1083,242 - 1095.939 1097.957
1065.658 1081.242 1091.959 1091.987
1065.658 1078.100 1085.675 1082.562

1 ' 1090.567 1092.068 1097.256 1098.033
1088.567 1088.068 1091.256 1090.033
1085.425 1081.784 1081.831 1077.466

2 1093.472 1094.964 1101.185 11G2.362
1089.472 1088.964 1093.185 1092.362
1083.189 1079.539 1080.618 1076.654

3 1097.26% 1098.936 1102.649 1103.186

’ i 1091.269 1090.936 1092.649 1091.186
1081.844 1678.370 1076.941 1072.336

5.1, The parameter estimates

Thirty-two different models were estimated for the first difference of the
log of real GNP; sixteen ARMA( p, g) models (i.e., d =0), where p=10,1,2,3,
g =10,1,2,3, and the corresponding sixteen fractional ARIMA maodels. Each
model was estimated by maximum likelihood assuming that the errors are
normally distributed. The exact likelihood functions were evaluated using the
procedures presented in Sowell (1992) and McLeod {1979) for the fractional
ARIMA models and the aonfractional ARMA models, respectively.® For

3The loglikelihood functions were maximized using the DFP routine in GQOPT. Numerical
derivatives were used in the optimization and the asymptotic standard errors are based on the |
‘H’ matrix from the DFP algorithm.
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Fig. 2. Spectral density of the estimated fractional ARIMA(3, d,2) madel plotted over. the
Periodogram for the first difference of the log of quarterly rea) GNP, 1947:1-1989:1V.
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Fig. 3. Spectral density of the estimated ARMA(0,2) mode] plotted over the periodogram for
the first difference of the log of quarterly real GNP, 1947:1-1980:Tv.
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each model, 2 times the loglikelihood function (2.#7}, the AIC, and the 5IC
are reported in table 1. The AJC chose the fractional ARIMA(3, d,2) model,
while the SIC chose the nonfractional ARMA(0,2). The decision on which of
these two models to consider is settled by looking at how well the estimated
models explain the long-run behavior of the data. To determine this, the
implied spectral densities were plotted over the periodogram for the data in
fie. 2 and fig. 3. Fig. 3 demonstrates how the point estimates of the
ARMA(0, 2) model miss the behavior of the series at a low frequencies; in
particular the eight periodogram ordinates® approaching zero show a down-
ward pattern but the estimated spectral density is actually increasing. The
data appear to be explained best by the fractional ARIMA(3, 4,2).> The
estimated model is

(1- L18 L+ 093 L2 051 -1y 7 ax,
((1.397) {0.317) (0.193) (0.345)

={1- 029 L+ 081 L*e,.
(03.132) (0.112)

where 32 =8413 % 1073, £=552.847, and asymptotic standard errors are
reported helow each estimated parameter. The parameter estimates for ail 16
fractional models are reported in table 2, and the parameter estimates for
the 16 nonfractional models are reported in table 3. The restriction d = 0.0
was imposed in the estimation of the ARMA(3,2) model. The likelihood
function value for this restricted model was 551.325. The restriction d = —1.0
was imposed indirectly in the estimation of the ARMA(3,3} model. The
parameter estimates reported in table 3 show that the estimated ARMA(3, 3)
contains a-unit root in its MA process. The likelihood function value for the
ARMA(3, 3) model was 551.593.

5.2, Econometric issues and interpretations

The consistency and asymptotic normality for the maximum likelihood
estimates for the Gaussian fractional ARIMA model are presented in
Dahlhaus (1989), for models where 0 <d < 1. Asymptotic properties when
d < 0, the relevant case for this paper, are still an open question. Monte
Carlo results presented in Cheung and Diebold (1990) and Sowell (1992)
show that the maximum likelihcod estimators have comparable small sample

I These ordinates are only assaciated with the behavior of the time series for cycles that are 5
years or longer.

3 likelihood ratio test of the testrictions implied by the ARMALD, 2} on the ARIMA. (3,4,2)
can be rejected at the 5 percent level of significance.
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Table 2

Farameter estimates for fractional ARMA models; first difference of the fog of quarterly real

GNP (s.a.); Cltibase 1947:1-1989:1V; r-statistics in parentheses.

Model d & b, P4 8, 8, &5
(0, ¢,0 0.29
(4.18)
0, d,1) 0.16 0.16
(1.52) {1.65}
0,d4,2) —0.03 0,33 0.28
(~031 (2.69) (3.84)
0,4,3) ~0.20 0.48 044 0.25
{—192) {4.68) (4.73) (2.38)
(i,d, —0.45 -0.77
(—2.90) (~6.48)
1,d,1) —0.38 —0.74 —~0.05
(=2.16) {-6.63) (—0.44)
(1,d,2} —-0.41 —0.65 0.06 0.23
(-~ 1.42) (=257 (0.50) (.57
(1,4,3) ~0.33 —0.37 0.26 0.39 0.17
(- 173 (—1.04) (1.17) (2.600 (11D
2,d.0) —0.30 —0.60 —-0.08
(~1.27) {—2.44) (—0.79)
(2,d,1) —0.29 -0.07 —.44 0.52
(—1,56) (—0.22) (—2.10) (1.65)
(2.4,2) —0.25 -0.78 0.26 -0.23 037
(—0.79) (~2.80) (1.04) (-092) (149)
(2,d,3) -0.13 -0.41 0.39 0.03 0.63 0.19
{—0.79) (-1 {147} (0.12) {3.45) (1.50)
(3,d,0) -0.39 ~0.70 —0.17 0.17
(—1.53) (—=2.77) (-1.,65) (223
G.d, 1) -0.34 -0.75 — .11 0.18 ~0.11
(—1.09) (=227 (—0.45) {(2.21) (—0.25)
(3,d,2) —0.59 ~1.18 0.93 —-0.51 -0.29 0.81
(—1.71) (—2.97) 2.93) (-26D (—2.19) (7.22)
3,d,3) —-0.52 ~1.16 0.94 —-0.50 —034 083 -0.04
{—1.16) (—3.53) (3.56)  (—2.65) {(—1.08) (6.03) {(—-0.18)

properties for positive and nepative values of 4. This suggests that the

standard asymptotic properties apply when d < 0.

Because the fractionally differencing parameter captures the long-run
behavior of a series, the appropriateness of asvmptotic results when inter-
preting smal! sample results is questionable.® The small sample properties of

“For example, see section 6.2 of this paper.
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Table 3

Parameter estimates for ARMA(p, ) models; first difference of the log of quarterly real GNP
(s.2.); Citibase 1947:1-1989:IV; ¢-statistics in parentheses.

Mode! &, & & # 8, 84
0o
(0,1} 0.27
(4.48)
0,2 0.30 0.27
4.0m (3.88)
,3) 0.33 0.34 0.13
(3.46) (5.40) (1.57)
(,m -0.37
' {—5.35)
(1,1) -0.52 —0.17
(—-4.28) {-1.81)
{2 —0.25 0.07 0.24
(-1.57 (0.46) (2.81
(1,3 —0.93 —0.64 -0.05 —0.30
(- 1.88} (-0.78) (—0.06) {-0.78)
2,0 -0.32 -{0.13
(—3.96) (—1.63) .
2,1} 0.07 -0.2% 0.39
(0.24) (—2.56} (1.34)
(2.2 —0.60 0.49 -0.30 0.64
(—3.60) (4.83) {—2.40) {5.70)
(2.3) —0.40 0.53 —0.09 0.71 0.14
(—1.8%) (3.35) (-0.39) (6.42} (1.23)
3,0 —0.34 -0.18 0.15
(—453) (=227) (1.98)
(3D —0.83 -0.02 0.22 —-0.50
(=230 (—0.15% (2.89) (—1.36)
3,2) —0.60 0.67 —-0.14 -0.28 0.79
(—4.05) (3.75) {—1.33) {—2.29) (6.71)
(3,3 —1.52 0.97 ={.41 ~-1.26 6.90 — .64
(- 5.65} LD (= 1.06) (—4.09 {1.63) (—1.5% -

the estimates must be investigated. The estimates reported above will be
interpreted assuming standard asymptotic results and also based on the small
sample distributions determined by Monte Carlo simulation.

The null hypotheses of interest are d =0.0 {(support for the unit root
model) and d= —1.0 (support for the time trend model). Imposing the
hypothesis ¢ =0. on the fractional ARIMA(3,d.2) model gives the
ARMAC(3,2) model. So to determine the small sample distribution of tests for
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Fig. 4. Estimate of the likelihood ratio statistic’s small sample density for the hypothesis

Hy: d = 0.0. The simulated model was the ARMA(3,2) model estimated for the first difference

of the log of real US GNP. The dotted line is the chi-squared density with one degree
of freedom.

the hypothesis d = 0.0, 1000 samples were simulated from the estimated
ARMAC(3, 2) model. For each sample both the fractional ARIMA(3, d,2) and
the ARMA(3,2) model were estimated by maximum likelihood. The maxi-
mum likelihood estimates of d, the Wald test statistics for the hypothesis
d = (.0, and the likelihood ratio statistics of the hypothesis d = 0.0 were used
to estimate small sample densities and empirical p-values for the observed
test statistics for the real GNP series. As noted above, imposing the restric-
tion d = —1.0 on the fractional ARIMA(3, d,2) model, for this series, gives
the ARMA(3,3) model. So to determine the small sample distribution of
tests for the hypothesis d = —1.0, 1000 samples were simulated from the
estimated ARMAC(3,3) model. For each sample both the fractional
ARIMAG, d,2) and the ARMA(3,3) model (with a unit root in the MA
process) were estimated by maximum likelihood. The maximum likelihood
estimates of d, the Wald test statistics for the hypothesis d = — 1.0, and the
likelihood ratio statistics of the hypothesis d = — 1.0 were used to estimate
small sample densities and empirical p-values for the observed test statistics
for the real GNP series.
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Fig. 5. Estimate of the Wald statistic’s small sample density for the hypothesis Hy: d = 0.0. The
simulated model was the ARMA(3,2) model estimated for the first difference of the log of real
US GNP. The dotted line is a standard normal density.

First consider the nuil hypothesis d = 0.0; the likelihood ratio test statistics
value is 3.046. For a chi-squared distribution with one degree of freedom this
implies a p-value of 8.3 percent. The estimated small sample density for this
statistic is given in fig. 4. The chi-squared distribution with one degree of
freedom appears to be a reasonable approximation.” The empirical p-value
from the observed statistic is 10.1 percent. The Wald test of this hypothesis
gives a test statistic value of 1.710 and for a normal distribution this implies a
one-tailed p-value of 4.36 percent. The estimated small sample density for
this statistic is given in fig. 5. The standard normal density does not appear to
be a good approximation. The small sample density has a much longer and
thicker left tail. The empirical p-value is 8.8 percent. The small sample
density for maximum likelihood estimate of d is given in fig. 6. The density
shows a second smaller mode apparently centered near — 0.59. Using the

TThe sample mean of the likelihood ratio statistics is 1.1035 and the standard deviation is
1.5198. The small sample density has slightly more mass on higher values than would a
chi-squared density with one degree of freedom.
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Fig. 6. Estimate of the small sample density for the maximum liketihood cstimate of d, where
the population parameter value is & = 0.0. The simulated model was the ARMA(3, 2} model
estimated for the first difference of the log of real US GNP,

small sample density for the maximum likelihood estimate of d the empirical
p-value for the estimate of d for the observed GNP series is 4.9 percent. The
evidence generally agrees that the hypothesis d = (1,0, which indicates sup-
port of a unit root in real GNP, cannot be rejected at the 95 percent level of
significance but could be rejected at the 90 percent level of significance.
Now consider the null hypothesis d = — 1.0; the likelihood ratio ‘test
statistic value is 2.509 and for a chi-squared distribution with one degree of
freedom this implies a p-value of 11.41 percent. The estimated small sample
density for this statistic is given in fig. 7. The chi-squared distribution with
one degree of freedom appears to be a reasonable approximation.® The
empirical p-value from the observed statistic is 8.0 percent. The Waid test
‘statistic for this hypothesis is 1.188. For a normal distribution this implies a

*The sample mean of the likelihood ratio statistics is 0.8572 and the standard deviation is
1.1316. The small sample density has stightly more mass on smaller values than would
chi-squared density with one degree of freedom. :
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Fig. 7. Estimate of the likelihood ratic statistic’s small sample density for the hypothesis Hy:
d = — 1.0. The simulated model was the ARMA(3,3) model estimated for the first difference of
the log of real US GNP. The dotted line is the chi-squared density with_one degree of freedom.

one-tailed p-value of 11.7 percent. The estimated small sample density for
this statistic is given in fig. 8. The standard normal density does not appear to
be good approximation. The small sample density has a shorter left tail and a
longer right tail than a standard normal density. The empirical p-value is
16.8 percent. The small sample density for the maximum likelihood estimate
of d is given in fig. 9. The density shows a thick right tail. Using the small
sample density for the maximum likelihood estimate of 4, the empirical
p-value for the estimate of 4 for the observed GNP series is 9 percent.
Again, the evidence generally agrees that the hypothesis d = —1.0, which
indicates support of a time trend in real GNP, cannot be rejected at the 95
percent level of significance but could possibly be rejected at the 90 percent
level of significance. _

That the fractional parameéter estimate was not significantly (i.e., 5 percent
level) different from zero and not significantly different from —1.0 implies
that the data cannot distinguish between the two models of trend. This result
can be seen graphically by plotting cross-sections of the loglikelihood func-
tion. In fig. 10, three cross-sections of the loglikelihood function are plotted.
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Fig. 8 Estimate of the Wald statistic’s small sample density for the hypothesis H : d= —1.0.
The simulated model was the ARMA(3, 3} mode] estimated for the first difference of the log of
real US GNP. The dotted line is a standard normal density.

Each cross-section passes through the maximum for the fractional
ARIMA(, d,2) model. One cross-section is in the d dimension, another
passes through the estimated ARMA(3,2) model, and the third passes
through the estimated ARMAQ,3) model. The parabolic shape of the
cross-section in the o dimension is in sharp contrast to the other cross-sec-
~tions. The other cross-sections show a much slower decline from the maxi-
murn, which highlights the uncertainty in the data concerning the population
parameter values. This explains why this series regularly fails to reject both
the null hypothesis of time trend and unit root. This also highlights the
danger of forcing the data to fit info one typé of model or the other.

That the optimal model selected by the AIC is a fractional model shows
the importance of including the fractional differencing parameter when
modeling the long-run behavior of a time series. If the fractional differencing
parameter were not included, the AIC wouid have selected the ARMA(2, 2)
as in Campbell and Mankiw (1987). The parameter estimates associated with
the ARMA(Z2,2) model suggest strong support that the series is consistent
with the unit root model. However, a comparison of the periodogram for the
data and the spectral density implied by the ARMA(2,2) model in fig. 11
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Fig. 9. Estimate of the small sample density for the maximum likelihood estimate of d, where
the population parameter value is 4 = — 1.0. The simulated model was the ARMAQ, 3) model
estimated for the first difference of the log of real U$ GNP.

shows that the estimated model does a poor job of capturing the long-run
behavior of the series,® which is the behavior being investigated. This is an
example where the ARMA(p, g) models miss the long-run behavior of the
series, This position is supported by the fact that when the fractional
differencing parameter is included the drop in the periodogram is captured
and the fractional model obtains a higher AJC than did all of the estimated
ARMA( p, g) models.

6. Comparison to previous work

6.1. Christiano and Eichenbaum {1990)

The conclusion that postwar quarterly GNP is equally consistent with both
the deterministic time trend model and the unit root with drift modei is the
same conclusion reached in Christiano and Eichenbaum (1990) [C&E]. A

*The periodogram shows a decline between frequencies 0.4 and 0.0 (cycles longer than four
years). The ARMAI(Z,2) model misses this long-run behavior.
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Fig. 10, Cross-sectional plots of the loglikelihood function for the first difference of the log of
real US GNP. Each cross-section is through the maximum for the fractional ARIMA(3, d,2)
model. The solid line is the cross-section in the & dimension. The dotted line is the cross-
section that passes though the maximum achieved by the ARMAC(3,3) model. For this time
series the ARMAC3, 3) model is actually the fractianal ARIMAC3, 4, 2) model with the restriction
d = —1.0, which is consistent with a time trend model. The dashed line is the cross-section
that passes though the maximum achieved by the ARMA(3,2) model. The ARMA(3,2) model
can be thought of as the fractional ARIMAC(3, 4,2) model with the restriction d =00,
which is consistent with a unit root mode!, The + denotes the maximum achieved by the
(time trend) ARMA(3,3) model. The > denates the maximum achieved by the (unit root)
ARMAI(3, 2) model,

comparison of the current test with the analysis in C&E demonstrates the
usefulness of the fractionaily integrated model, In C&E only nonfractional
ARMA models were considered. As noted in section 2, these possess some
inherent problems in modeling the long run, which were noted in C&E. The
case made in C&E for the consistency of the GNP data with a time trend
model relied on the parameter estimates of the ARMAI(3, 3). Unfortunately,
this model was not selected by any of the information criteria. This
ARMA(3,3) model had near root cancelation of a near unit root in the AR
polynomial and a unit root in the MA polynomial. One possible explanation
for this is that the data were forced to fit into an ARMA model when the
data were more accurately explained by the fractional ARIMA model, The
problems are noticeably absent in the estimated fractional ARIMA(3, 4, 2)
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Fig. 11. Spectral density of the estimated ARMA(Z, 2) mode] plotted over the periodogram for
the first difference of the log of quarterly real GNP, 1947:1-1989:1V.

model. The fractional model was selected by the AJC, the AR and the MA
processes did not have near root cancelation and the parameter values were
not near the boundary of the parameter space. The analysis in C&FE relied
on extensive Monte Carlo and plots of the likelihood functions in the
dimension of the speciral density at frequency zero. The usefulness of the
fractional ARIMA model can be seen by noting that the same conclusions
are reached in the current paper by simply estimating (fractional) ARIMA
models for the series.

6.2. Diebold and Rudebusch {1989)

The conclusions that postwar GNP data cannot distinguish between a unit
root and a time trend model is in sharp contrast to the results reported in
D& R. Based on the point estimates and standard errors reported in D &R
the data strongly reject a time trend model and are consistent with only a
unit root model. This sericus disagreement in the long-run characteristics of

MEqr the samptle period, 1947:1 to 1987:11, the comparable fractional differencing parameter
estimates, with standard errors in parentheses, were —0.1(0.24), —0.08 (0.23), and ~0.12{0.21).
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real GNP is a result of bias in the fractional differencing parameter reported
in D&R.

The problem in the analysis used in D&R is that the periodogram
ordinates, used in calculating the estimate of d, were influenced by the
short-run dynamics of the series and gave misleading measures of the long
run. To see how this occurred consider what happened when D &R used
@ =0.5 to determine the number of periodogram ordinates, which will be
denoted by k. The number of periodogram ordinates used was k = 13.

However, the thirteenth harmonic ordinate was associated with a frequency
of A =1{(2w)13/161 which corresponds to cycles of length 3.1 years. Hence,
the long-run parameter was being estimated assuming no short-run influence
and ‘constant’ long-run behavior' for all cyeles longer than 3.1 years. Most
economists would argue that this range includes the business cycie and that
the assumption of no short-run influence from all cycles longer than 3.1 vears
is suspect. The problem is made even worse. as larger values of «. arc
considered; when a = (.55 the number of ordinates used was 17 which would
assume no short-run influence and constant long-run influence from 2.37
years to infinity.

The estimation procedure used in D&R was presented in Geweke and
Porter-Hudak (1983). The estimator exploits the fact that the log spectral
density of a series that is fractionally integrated, i.e., (1 — LYx,=¢,is of the
form ' '

log(f,(A)) = ~dlog[4sin*(A /2)] + log(c?). (5)

This relationship between frequency and the spectral density holds for all
frequencies if the series is a pure fractionally integrated series, i.e., no AR or
MA terms; see fig. 1. When there are additional parameters in the model the
relationship given in eq. (5) does not hold. However, it was shown in Geweke
and Porter-Hudak (1983) that even if there exist short-run parameters, as the
number of observations increases, the relationship holds approximately for
frequencies in a neighborhood of zero. If the neighborhood shrinks at an
appropriate rate with sample size, then a consistent estimator can be ob-
tained. The GPH estimator only uses sample information through the rela-
tionship given by eq. (5). The addition of more periodogram ordinates is
useful only if eq. (5) is well approximated.

To understand the impact that this has on the parameter estimates, a
Monte Carlo was performed. One thousand samples were simulated from the
fractional ARIMAQ3, d,2) model estimated for quarterly real GNP. Far each
171 observation sample, the fractional differencing parameter d was esti-

1 A . , X :
Constant long-run behavior in the sznse of a single fractional parameter with no ARMA
parameters.
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Fig. 12. Summary statistics of the small sample distributions of the GPH estimate for 1000

samples of 171 observations simulated from the estimated model for the first difference of the

log of real GNFP. The solid line connects the means and the dotted lines connect the two

standard deviations confidence bounds. The dashed line is the population parameter value of 4

used in the simulations. For the actual GNP series the GPH parameter estimate is denated by
an asterisk (= ).

mated using the first & nonzero periodogram ordinates and k& was varied
between 3 and 32. For each sample 30 different fractional differencing
parameters were estimated. The mean and standard deviation of the 1000
estimated values were calculated and plotted in fig. 12. The solid line
connects the means and the dotted lines connect two standard deviations
confidence bounds. The dashed line in fig. 12 shows the population parame-
ter value of 4 for the Monte Carlo. The estimated means ail show bias which
monotonically increases with the number of ordinates used. The standard
deviations decrease as the number of periodogram ordinates increase but the
cost is increased bias. The increased bias is noted by the divergence of the
- astimated means (the solid line) and the population value of J (the dashed
line). For the parametric model that describes postwar quarterly GNP, it
appears 1o be the case that the effect of the ARMA parameters is that the
relationship given in eq. (5) is not well approximated even restricting atten-
tion to three periodogram ordinates. The relationship in eq. (5) cannot be
successfully exploited with the current sample size. In Geweke and Porter-

JMon— E
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Tabie 4

Monte Carlo resuits from 1000 samples of T = 17] observations; each sample simulated from the
fractional ARMAC3, ¢,2) model estimated from postwar quarterly real GNP, For each sample
the maximum likelihood estimates were caleulated, and the means and standard deviations of

W

value —0.59 -1.18 (193 -{.51 -0.29 0.81
Mean —0.617 —1.197 0.913 —0.444 —0.300 0.77%

Std. dev, 0.252 0321 0.323 0.201 02.215 0.168

Hudak (1983) [GPH] comsistency and asymptotic normality were shown to
hold for 4 < 0. The above Monte Carlo shows that for a series, of typical
length for macroeconomic series, the asymptotic results are a poor approxi-
mation of small sample distributions when AR and MA terms are present.'?

To see if this bias can explain the difference in the maximum likelihood
estimates and the paraineter estimates presented in D& R, for the GNP
series the GPH parameter estimates were calculated for k=3 to 32. Each

the fractional ARIMAC3, 4,2) model for real GNP. The bias in the GPH
estimates can explain the difference in the maximum likelihood estimates and
those published in D&R.

ference is that with maximum likelihood the short-run parameters are also
estimated. To be sure that this is the situation the similar Monte Carlo was
considered for the maximum likelihood estimation procedure. One thausand
samples were simulated from the fractional ARIMA(3, 4. 2) model estimated
for quarterly real GNP, For each sample the fractional ARIMAG, 4,2
modei was estimated by the exact maximum likelihood procedure. The means
and standard deviations of the 1000 estimated parameter vectors are re-
ported in table 4. All the parameters of the model are accurately estimated
with the bias of each estimate below 0.066. The estimated small sample
density of the maximum likelihood estimate of d is plotted in fig. 13. The
normal distribution with the same mean and standard deviation is also
plotted and appears to be a good approximation to the small sample density.

The above Monte Carlo shows that when the correct mode! specification is
known, maximum likelihood gives more accurate estimates than the estima-

NMore extensive Monite Carlo results presented in Sowell (1992} indicate that the GPH
standard errors are g good approximation to the observed standard deviation in the GPH
estimate. In practice, the problem is the bias caused by short-run dynamics,
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Fig. 13. Estimate of the small sample density for the maximum likelihood estimate of d, where

the population parameter value is &= —0.59. The simulated model was the fractional

ARIMAC3, 4,2} model estimated for the first difference of the log real US GNP. The dotted
curve is a normal density with the same mean and standard deviation.

tion procedure presented in Geweke and Porter-Hudak (1983). However, in
practice the specification is uncertain and must be estimated. It is still an
open guestion how maximum likelihood performs relative to the GPH
estimation procedure when the specification must be estimated.

7. Summary and conclusion

This paper has considered modeling the long-run behavior of economic
time series using fractional ARIMA models. Shortcomings of nonfractional
models in modeling the long-run behavior of a series are reduced or avoided
by considering the fractional ARIMA models. As an application, the deter-
ministic trend and the unit root with drift models were nested in a fraction-
ally integrated ARIMA( p, d, g) model. This allowed testing between the two
models based on estimated parameters. The only restriction between these
two models concesns the absence or presence of the term (1 — L) in the Wold
representation. One testable restriction that this implies concerns the rate at
which the dependence between ohservations decays. This can be indexed by
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the fractional differencing parameter and forms the basis for a test between
the two models. This test was applied to postwar US real quarterly GNP. The
model which best explained the data was the fractional ARIMA(3,d,2)
model. The selection of a fractional model and the parameter estimates
showed the importance of considering fractional ARIMA models when
modeling the long-run behavior of a time series. The conclusion of the test is
that the data are consistent with both models. Hence, researchers should be
careful not to force the series to follow one model or the other. This
underscores again that the failure of a statistical test to reject a model is not
sufficient to conclude that the series foliows the given model.

The fact that the postwar GNP series cannot distinguish between a time
trend and a uwnit root model has important implications for theoretical
-models of the economy. Attention should be given to models where both the
policy and theoretical implications of interest.are not sensitive to the model
of the trend. Ideally we would like a model which implies the same results if
the trend is modeled as either a time trend or a unit root. Until such models
are developed, further attention should be given to new statistical techniques
which focus on discovering the long-run behavior of time series.
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